CodeQL library for Python
codeql/python-all 2.1.2-dev (changelog, source)
Search

Class Bytes

A bytes constant, such as b'ascii'. Note that unadorned string constants such as "hello" are treated as Bytes for Python2, but Unicode for Python3.

Import path

import python

Direct supertypes

Indirect supertypes

Predicates

Inherited predicates

booleanValuefrom StringLiteral
contains

Whether this contains inner syntactically

from AstNode
containsInScope

Whether this contains inner syntactically and inner has the same scope as this

from AstNode
defines

Whether this expression defines variable v If doing dataflow, then consider using SsaVariable.getDefinition() for more precision.

from Expr
getAChildNode

Gets a child node of this node in the AST. This predicate exists to aid exploration of the AST and other experiments. The child-parent relation may not be meaningful. For a more meaningful relation in terms of dependency use Expr.getASubExpression(), Stmt.getASubStatement(), Stmt.getASubExpression() or Scope.getAStmt().

from StringLiteral
getAFlowNode

Gets a flow node corresponding directly to this node. NOTE: For some statements and other purely syntactic elements, there may not be a ControlFlowNode

from AstNode
getASubExpression

Gets an immediate (non-nested) sub-expression of this expression

from StringLiteral
getAnImplicitlyConcatenatedPart

Gets an implicitly_concatenated_part of this string literal.

from Str_
getEnclosingModule

Gets the module in which this expression occurs

from Expr
getImplicitlyConcatenatedPart

Gets the nth implicitly_concatenated_part of this string literal.

from Str_
getImplicitlyConcatenatedParts

Gets the implicitly_concatenated_parts of this string literal.

from Str_
getLiteralValuefrom ImmutableLiteral
getLocationfrom Expr
getParent

Gets a parent of this expression

from Expr_
getParentNode

Gets the parent node of this node in the AST. This predicate exists to aid exploration of the AST and other experiments. The child-parent relation may not be meaningful. For a more meaningful relation in terms of dependency use Expr.getASubExpression(), Stmt.getASubStatement(), Stmt.getASubExpression() or Scope.getAStmt() applied to the parent.

from AstNode
getPrefix

Gets the prefix of this string literal.

from Str_
getS

Gets the text of this string literal.

from Str_
getScope

Gets the scope of this expression

from Expr
getText

Gets the text of this str constant

from StringLiteral
hasSideEffects

Whether this expression may have a side effect (as determined purely from its syntax)

from Expr
isArtificial

Whether this syntactic element is artificial, that is it is generated by the compiler and is not present in the source

from AstNode
isConstant

Whether this expression is a constant

from Expr
isDocString

Whether this is a docstring

from StringLiteral
isParenthesised

Whether the parenthesised property of this expression is true.

from Expr_
isParenthesized

Whether the parenthesized property of this expression is true.

from Expr
isUnicode

Holds if this string is a unicode string, either by default (e.g. if Python 3), or with an explicit prefix.

from StringLiteral
pointsTo

Gets a value that this expression might “point-to”.

from Expr
pointsTo

Holds if this expression might “point-to” to value.

from Expr
pointsTo

Holds if this expression might “point-to” to value which is from origin.

from Expr
pointsTo

Holds if this expression might “point-to” to value which is from origin in the given context.

from Expr
refersTo

NOTE: refersTo will be deprecated in 2019. Use pointsTo instead. Equivalent to this.refersTo(value, _)

from Expr
refersTo

NOTE: refersTo will be deprecated in 2019. Use pointsTo instead. Holds if this expression might “refer-to” to value which is from origin Unlike this.refersTo(value, _, origin), this predicate includes results where the class cannot be inferred.

from Expr
refersTo

NOTE: refersTo will be deprecated in 2019. Use pointsTo instead. Gets what this expression might “refer-to”. Performs a combination of localized (intra-procedural) points-to analysis and global module-level analysis. This points-to analysis favours precision over recall. It is highly precise, but may not provide information for a significant number of flow-nodes. If the class is unimportant then use refersTo(value) or refersTo(value, origin) instead. NOTE: For complex dataflow, involving multiple stages of points-to analysis, it may be more precise to use ControlFlowNode.refersTo(...) instead.

from Expr
refersTo

NOTE: refersTo will be deprecated in 2019. Use pointsTo instead. Gets what this expression might “refer-to” in the given context.

from Expr
toString

Gets a textual representation of this element.

from StringLiteral

Charpred