Tracking Static Analysis Violations Over Time to
Capture Developer Characteristics

Pavel Avgustinov, Arthur I. Baars, Anders S. Henriksen, Greg Lavender, Galen Menzel,
Oege de Moor, Max Schifer, Julian Tibble
Semmle Ltd.
Oxford, United Kingdom
publications@semmle.com

Abstract—Many interesting questions about the software qual-
ity of a code base can only be answered adequately if fine-
grained information about the evolution of quality metrics over
time and the contributions of individual developers is known.
We present an approach for tracking static analysis violations
(which are often indicative of defects) over the revision history
of a program, and for precisely attributing the introduction and
elimination of these violations to individual developers. As one
application, we demonstrate how this information can be used to
compute “fingerprints” of developers that reflect which kinds of
violations they tend to introduce or to fix. We have performed an
experimental study on several large open-source projects written
in different languages, providing evidence that these fingerprints
are well-defined and capture characteristic information about the
coding habits of individual developers.

I. INTRODUCTION

Static code analysis has become an integral part of the mod-
ern software developer’s toolbox for assessing and maintaining
software quality. There is a wide variety of static analysis
tools, particularly for Java and C/C++, which examine code
for potential bugs or performance bottlenecks, flag violations
of best practices, and compute software metrics. It has been
shown that static analysis warnings and sub-par metric scores
(below collectively referred to as violations) are indicative of
software defects [27], [29], [35], [37], [38].

Some static analysis tools are tightly integrated into the
development cycle and examine code as it is being written [1],
[6], while others run in batch mode to produce detailed reports
about an entire code base [4], [7], [31]. The latter approach
is particularly useful for obtaining a high-level overview of
software quality. Moreover, most modern tools can aggregate
violations at different levels of detail, thus making it easy, for
instance, to identify modules that appear to be of worse quality
than others and should thus receive special attention.

However, this view of software quality is both static and
coarse-grained: it is static because it only concerns a single
snapshot of the code base at one point in time, and it is
coarse-grained because it does not differentiate contributions
by individual developers.

Most software is in a constant state of flux where developers
implement new features, fix bugs, clean up and refactor code,
add tests, or write documentation. While existing tools can
certainly analyse multiple versions of a code base separately,
they cannot easily assess changes between revisions. For

instance, we might want to know what violations were fixed
in a given revision, or which new violations were introduced.
In short, analysing individual snapshots cannot provide an
accurate picture of the evolution of software quality over time.

Similarly, most code bases have many authors: there may
be seasoned developers and novice programmers, prolific core
hackers and occasional bugfix contributors. By just looking at
a single snapshot, it is impossible to understand the quantity
and quality of contributions of individual developers.

Yet there are many situations where more dynamic and
fine-grained information is desirable. We briefly outline three
example scenarios:

1) Alice wants to delegate a crucial subtask of her program
to a third-party library and is looking for an open-source
library that fits her needs. As is usually the case with
open-source projects, many different implementations
are available, and Alice has to carefully choose one that
is not only of high quality but also actively maintained.
She could use an off-the-shelf static analysis tool to
gain insight into the quality of the latest version of the
library. In addition, however, she might want to know
how its quality has evolved over time, and how different
developers have contributed to the code. For instance,
she may want to avoid a library where a core developer
who has contributed a lot of new code and bug fixes for
many years has recently become inactive.

2) Bob is managing a team of developers, and would like
to better understand their strengths and weaknesses. If
he knew, for instance, that developer Dave often intro-
duces static analysis violations related to concurrency,
he could arrange for Dave to receive additional training
in concurrency. If there is another developer on the team
who often fixes such violations, Bob could team them
up for code reviews.

3) In an effort to improve software quality, Bob’s colleague
Carol uses a static analyser to find modules that have a
particularly high violation density and hence are likely to
be of bad quality. In deciding which developer to put to
work on this code, it again helps if she understands their
expertise. If, for instance, the code in question has many
violations related to possible null pointer exceptions, it
may be a good idea to assign a developer who has a
strong track record of fixing such violations.



All three scenarios rely on being able to precisely attribute
new and fixed violations to individual developers. This can be
achieved by integrating static analysis with revision control
information: if a violation appears or disappears in a revision
authored by developer D, then this suggests that D was
responsible for introducing or fixing this violation, and it can
justifiably be attributed to them.'

For this method to work, however, we need a reliable way
of tracking violations between revisions: if both revision n
and revision n + 1 exhibit a violation of the same type, we
need to determine whether this is, in fact, the same violation,
or whether the violation in n was fixed and a new one of the
same type just happened to be introduced in n + 1.

Further challenges to be handled include merge commits
(which have more than one parent revision) and un-analysable
revisions: in almost any real-world code base, there is bound to
be an occasional bad commit that is not compilable, or cannot
meaningfully be analysed for other reasons. Such commits
require special care in order not to wrongly attribute violations
to authors of later commits.

Finally, there is an implicit assumption behind the scenarios
outlined above, namely that individual developers have a
distinctive “fingerprint” of violations that they introduce or fix.
If all developers tend, on average, to make the same mistakes,
then attribution information would not be very useful.

In this paper, we present Team Insight, a tool for fine-
grained tracking of software quality over time. At its core
is a method for tracking violations across revisions based
on a combination of diff-based location matching and hash-
based context matching. This approach is robust in the face
of unrelated code changes or code moves, and fast enough to
work on large, real-world code bases. Team Insight integrates
with many popular revision control systems to attribute viola-
tions to developers. It uses a simple distributed approach for
efficiently analysing and attributing a large number of revisions
in parallel.

We also present an approach for computing fingerprints
from attribution data, which compactly represent a summary
of which violations a developer tends to introduce or fix.

We have used Team Insight to analyse the complete revision
history of several large open source projects written in Java,
C++, Scala and JavaScript. We performed experiments to
verify that our violation tracking algorithm does not spuri-
ously match up unrelated revisions, and to gauge the relative
importance of the different matching strategies. Finally, we
used the information about new and introduced violations to
test the robustness of our developer fingerprints: selecting
a training set and a test set from the analysed snapshots,
we computed fingerprints from both sets of snapshots and
compared them. We found that fingerprints were both stable

'Many version control systems provide a way to determine which developer
last changed a given line of code. This information, however, is not usually
enough to determine who introduced a violation: the last developer to touch
the relevant source code may have been making an entirely unrelated edit.
Also, many violations are non-local in that the code that causes them is far
removed from the code that is flagged by the static analysis. Finally, this
approach does not provide any information about fixed violations.

127 Set<String> revs;

128 ...

162 for (IRevision rev : new ArraylList<IRevision>(keep)) {
163 if (!revs.contains(rev)) {

164

179 3

180 }

Fig. 1. Example of a violation

(i.e., the fingerprints computed for a single developer from the
test and the training set are very similar) and characteristic
of individual developers (i.e., the fingerprints computed for
different developers are quite different). Hence our fingerprints
could be useful in scenarios such as the ones outlined above.
We now turn to a brief exposition of some basic concepts
underlying Team Insight (Section II). We then explain our
violation matching technique in more detail (Section III) and
discuss how it is used to attribute new and fixed violations
to developers (Section IV). Next, we describe our approach
for computing developer fingerprints in Section V. These
developments are then pulled together in Section VI, which
reports on our experimental evaluation. Finally, Section VII
discusses related work, and Section VIII concludes.

II. BACKGROUND

We start by motivating the concept of violation matching
with a real-world example from a Java project we analysed.

At one point, the file DeleteSnapshots. java in the code
base contained the code fragment shown in Figure 1. On
line 127, the variable revs is declared to be of type set<string>,
yet the contains test on line 163 checks whether rev, which is
of type IRevision, is contained in it.

This is highly suspicious: unless unsafe casts were used to
deliberately break type safety, every element in revs must be of
type String, which rev is not. Thus, the test must always return
false, which is probably not what the programmer intended.
In this case the code should have checked whether rev.get1d()
(which is a string representation of rev) is contained in revs.

Arguably, this code should be rejected by the type checker,
but for historical reasons the contains method in Java’s col-
lections framework is declared to have parameter type object,
so any object can be tested for membership in any collection,
regardless of the collection’s type. This problem is common
enough that many static analysis tools for Java, including our
own static analysis tool Project Insight [31], check for it.

To trace the life cycle of this violation, we consider seven
revisions of the code base, which we refer to as revisions 0
to 6. Figure 2 gives a brief summary of the relevant changes
in each revision, and the source location associated with the
violation (here, the call to contains). In each case, the violation
location is given as a pair of a file name and a line number.”
For now, we assume that these revisions were committed in
sequence as shown in Figure 3 (a).

2In practice, of course, locations are more precise: they include a start and
an end position, and specify both line and column number.



Violation Location

N/A

DeleteSnapshots. java:163
DeleteSnapshots. java:173
DeleteSnapshots. java:175
FindObsoleteSnapshots. java:175
FindObsoleteSnapshots. java:175
N/A

Fig. 2. Relevant revisions of the code in Figure 1

Revision | Change Summary
0 DeleteSnapshots. java created
1 violation introduced
2 code added before violation
3 code added before violation
4 containing file renamed
5 code added after violation
6 violation fixed
1l v N
1l N /
1l l
1l 1l
1l v N
® NCY
(a) (b)

Fig. 3. Two commit graphs for the revisions in Figure 2; revisions where the
violation is present are shaded.

The file containing the violation was first created in Re-
vision O, and the violation itself was introduced in Revi-
sion 1; at this point, it was located at line 163 of file
DeleteSnapshots.java. In Revision 2 the violation was still
present, but some code had been inserted before it, so it
had moved to line 173. In Revision 3, it moved to line
175. In Revision 4, its line number number did not change,
but the enclosing class was renamed to FindObsoleteSnapshots,
and the enclosing file to FindObsoleteSnapshots.java. In
Revision 5, the file was again changed, but since the changes
were textually after the violation its location did not change.
Finally, the violation was fixed in Revision 6.

If we want to automatically and precisely attribute violations
to developers, we have to carefully keep track of violations
across revisions. For instance, a violation tracking approach
based purely on source locations would consider the violation
in Revision 2 to be different from the violation in Revision 1,
since they have different source locations. Consequently, the
author of Revision 2 would erroneously be considered to have
fixed a violation on line 163 and introduced a violation of the
same type on line 173.

A more lenient location-based approach might try to identify
violations based on the name of the method and class enclosing

its source location. This, however, would fail in Revision 4,
where the enclosing class is renamed (along with the file).

Ignoring source locations entirely, one could attempt to
match up violations based on the similarity of their surround-
ing code: if two subsequent revisions contain two violations
of the same type that appear in identical or very similar
fragments of code, then there is a good chance that both are
occurrences of the same violation. In Revision 4, for instance,
there were only two minor textual changes (in addition to the
file renaming), so a similarity-based approach could easily
determine that the violation is still present and has simply
moved to another file.

Note, however, that neither location-based matching nor
similarity-based matching is strictly superior to the other:
while the former cannot deal with code movement or file
renaming, the latter can become confused by unrelated changes
in code close to the violation. In such a case, a similarity-based
matcher may not be able to identify violations even if their
location has not changed.

Team Insight uses a combined approach detailed in the next
section: first, it tries to match up as many violations as possible
based on their source location. For those violations that could
not be matched up, it computes a hash of the surrounding
tokens (similar to techniques used in clone detection [17]),
and then matches up violations with the same hash.

Additional care has to be taken when considering non-
linear commit graphs with branches and merges. Assume, for
instance, that the revisions of Figure 2 were committed as
shown in the commit graph of Figure 3 (b). Here, Revision 1
and Revision 2 are committed independently on separate
branches, and then merged together by a merge commit m.
Similarly, Revisions 5 and 6 are committed independently
and merged by n. Note in particular that the violation is
now no longer present in Revision 2, which branched off
before the violation was introduced in Revision 1. In the
merge commit m, however, the violation is merged in with
the changes from Revision 2.

The author of the merge commit m should clearly not be
blamed for introducing the violation, since it is already present
in Revision 1. In general, we can only consider a merge
commit to introduce a violation if that violation is absent in
all its parent revisions (but not the merge commit itself).

Similarly, the author of the merge commit n should not be
considered to have fixed the violation, since it was already



absent in Revision 5. Again, a merge commit can only be
considered to fix a violation if that violation is present in all
its parent revisions but not the merge commit itself.

Finally, it should be noted that in any non-trivial code
base there are revisions that for one reason or another cannot
be analysed. For example, this could be due to a partial
or erroneous commits that results in uncompilable code, or
simply because some external libraries required by a very old
revision are no longer available. Such un-analysable revisions
have to be treated with care when attributing violations. If, say,
Revision 3 of our example was not analysable, then it would
not be possible to decide whether the violation present in
Revision 4 was introduced in Revision 4 itself or was already
present in Revision 3. Looking further back, we can, of course,
note that the revision was already present before Revision 3,
so it is likely that neither 3 nor 4 introduced the violation, but
this is at best an educated guess.

This concludes our informal discussion. We will now de-
scribe the Team Insight attribution algorithm in more detail.

III. MATCHING VIOLATIONS

We start by establishing some terminology.

A project is a code base that can be subjected to static
analysis. A snapshot is a version of a project at a particular
point in time; for instance, if the project’s source code is stored
in a version control system, every revision is a snapshot. We
assume that there is a parent-of relation between snapshots.
There may be multiple snapshots with the same parent (due
to branching), and conversely a snapshot may have multiple
parents (due to merging).

We do not assume a particular underlying static analysis
system. All we require is that the static analysis can, for a
given snapshot S, produce a set of violations, where each
violation is uniquely identified by a source location [ and a
violation type t. The source location, in turn, is assumed to
be given by a start position and an end position delimiting
the piece of code that gives rise to the violation. Thus, the
violation can be modelled as a triple (S,1,¢). We explicitly
allow for the case that the static analysis may not be able
to analyse some snapshots, in which case there will be no
violation triples for that snapshot.?

With this terminology in place, the violation matching
problem can be stated succinctly as follows:

Given two snapshots .S}, and S, of the same project,
where S}, is a parent snapshot of S, and two viola-
tion triples V, := (Sp, 1, t,) and V. := (Sc, ¢, t.),
do V), and V, indicate the same underlying defect?

We will not attempt to give a precise semantic definition
of when two violations indicate the same defect. Previous
studies [21] have shown that even developers familiar with
a code base often disagree about the origin of code snippets,
so there may not be a single correct definition anyway. Instead,

3In practice, the static analysis may be able to analyse parts of a snapshot,
but we do not use this partial information since it is very hard to compare
between snapshots.

we describe the syntactic violation matching approach taken
by Team Insight, and leave it to our experimental evaluation
to provide empirical support for its validity.

To decide whether two violations (Sp, I, t,) and (S, I, t.)
match we employ a combination of three different matching
strategies: a location-based strategy that only takes the viola-
tion locations [, and [, into account, a snippet-based strategy
that considers the program text causing the violations, and a
hash-based strategy that also considers the program text around
the violations.

We will now explore these strategies in detail. Note that
clearly two violations can only match if they are of the same
type, so in the following we implicitly assume that ¢,, = t..

A. Location-based violation matching

The idea of location-based violation matching is to use a
diffing algorithm to derive a mapping from source positions
in .S}, to source positions in S, and then match up violations
if they have the same or almost the same start position under
this mapping.

Our implementation uses the well-known diffing algorithms
of Myers [26] and of Hunt and Szymanski [15] to derive
source position mappings for individual file in the snapshot.
Specifically, we use the former algorithm for dense diffs where
there is a lot of overlap between the two files, and the latter
for sparse diffs. Clearly, computing pairwise diffs for all the
files in the parent and child snapshots would be much too
expensive; hence, we only compute diffs for files with the
same path in both snapshots. In particular, if a file is renamed
or moved to a different directory, the location-based violation
matching will not be able to match up any violations occurring
in it. We rely on the hash-based matching explained below to
catch such cases.

We will use the Java code snippets shown in Figure 4 as
our running example in this section. The code on the left,
which we assume to be from the parent snapshot, contains
three violations: V; is an instance of the contains type mismatch
problem mentioned in Section II; V5 flags a reader object that
(we assume for this example) is not closed, thus potentially
leading to a resource leak; V3 flags a call to System.ge, which
is generally bad practice. These three violations reappear in
the child snapshot on the right, but the statements containing
them have been rearranged and new code has been inserted.
We will now show how our matching strategies match up these
violations.

When given two files F}, and F,, where F}, is from the
parent snapshot and F. from the child snapshot, the diffing
algorithms essentially partition F}, and F, into sequences of
line ranges 77, ...,72, and r{,...,r¢, respectively. Each pair

s T 1 Trs
of line ranges (r?,r¢) is either a matching pair, meaning that
the ranges are textually the same, or a diff pair, meaning that
they are not the same. Every line in F), and Fi belongs to
exactly one line range. For a location [, we write [{] to mean
the line range its start line belongs to, and A(l) to mean the

distance (in lines) from [ to the start of its line range.



if (apples.contains(orange))
Vi

++count;

Vo fr = new FileReader(“tst");

V3 [ systen.gcO);

Parent Snapshot

R*

fr = new FileReader('tst’); | V3
if (DEBUG) 1
{ System.geQ); } Vi
if (apples.contains(orange)) /
++count; ‘/1

Child Snapshot

Fig. 4. Examples of location-based violation matching

In general, there is no unique way of performing this
partitioning; we simply rely on whatever partitioning the
underlying diff algorithm produces.

In our example, there are four line ranges as indicated by
the boxes. We draw lines between corresponding line ranges,
which are labelled with = for matching pairs and with # for
diff pairs. ([V4], [V{]) and ([Vs],[V4]) form diff pairs, while
([V2], [V3)]) is the single matching pair. All violations have a
distance of zero from the start of their region, except for Vi
which has A(VY) = 1.

Consider now a violation V. in the child snapshot at location
le, and a violation V,, in the parent snapshot at location [,
where the files containing [. and [, have the same path. If
their ranges correspond, we try to match them up as follows:

1) If ({{c], [l,]) is a matching pair, then the violations are
triggered by code that did not change between S, and
Sc, so we only match them up if their positions within
the region are exactly the same, i.e., A(l.) = A(l,).
In our example, there is only one matching pair: the one
containing V5 and V4, respectively. Since their positions
in the region are the same, they are matched up.

2) If, on the other hand, ([I.],[l,]) is a diff pair, we allow

the locations to vary slightly: V.. and V), are considered
to match if |A(l.) — A(l,)| < e for some threshold value
€. In our implementation, we use € = 3.
For example, consider V3 on the left and V4 on the right.
Their regions form a diff pair, and A(V3) = 0 whereas
A(VY) = 1; since their distance is less than three lines,
we match them up.

B. Snippet-based violation matching

Since location-based matching requires violation locations
to belong to corresponding line ranges, this matching strategy
will fail for violations like V; whose location has changed
significantly between snapshots. We use an additional strategy
to catch simple cases where a violation has moved in the same
file, but is triggered by exactly the same snippet of code: if [,
and [, belong to the same file and the source text of /. and [,
(i.e., the text between the respective start and end positions)
is the same, we match them up. In the example, this allows
us to also match up V; and V7.

C. Hash-based violation matching

Neither location-based matching nor snippet-based match-
ing apply to violations in files that are renamed or moved
between snapshots. To match up those violations, we employ

a hash-based strategy that tries to match violations based on
the similarity of their surrounding code.

Specifically, for a violation V' = (S,1,t), we compute two
hash values h (V') and h~ (V): the former is computed from
the n tokens up to and including the first token in [/, and the
latter is computed from the n tokens starting with the first
token in [, where n is a fixed threshold value (by default, we
use n = 100). Two violations V. and V), are considered to
match if h< (Ve) = ha(Vp) or hs (Vo) = hs (V}).

If the location [ starts less than n tokens into the file,
h<(V) is undefined; similarly, h~ (V') is only defined if !
starts at least n tokens before the end of the file. This avoids
spurious matches due to short token sequences, but it makes
it necessary to use two hashes, since otherwise violations near
the beginning or the end of a file could never be matched.

IV. ATTRIBUTING VIOLATIONS

Now that we have discussed how to match violations be-
tween two snapshots, let us consider the problem of attributing
a snapshot S, that is, computing the sets of new and fixed
violations.

Clearly, a snapshot is only attributable if both it and all its
parent revisions can be analysed. As a special case, if S does
not have any parents, we do not consider it attributable, since
it may contain code copied from other sources and we know
nothing about the history of the violations in this code.

Let us first consider the case where S has precisely one
parent snapshot P. We write V(S) and V(P) for the sets
of violations of S and P, respectively. Using the matching
strategies described earlier, we can determine for any two
violations whether they match.

In general, a single violation in V'(,S) may match more than
one violation in V(P) and vice versa. To decrease the chance
of accidentally matching up unrelated violations, we prioritise
our matching strategies as follows:

1) Apply location-based matching first. If v € V(S) is
located in a diff range and may match more than one
violation in V'(P), choose the closest one.

2) Only use snippet-based matching if diff-based matching
fails. If more than one violation in V' (P) has the same
source text as v, choose the closest one.

3) Only use hash-based matching if location-based match-
ing and snippet-based matching both fail. If there are



two or more violations in V(.S) or V(P) that have the
same hash, exclude them from the rnatching.4

Furthermore, once a violation from V' (P) has been matched
up with a violation from V'(S), we exclude it from further
consideration. In this way, we obtain a matching relation
~ that matches every violation in V(S) with at most one
violation in V' (P) and vice versa.

Now the new violations in S are simply those for which
there is no matching violation in P:

N(S):={veV(9) |- eV(P)v~}

Dually, the set of fixed violations in .S are those violations
in P for which there is no matching violation in S:

F(S):={v eV(P)|-FweV(S)v~v}

Note that according to this definition, simply deleting a
piece of code fixes all the violations in it.

Merge commits have more than one parent. Generalising
the definition of N(S) to this case poses no problems, but
generalising F(.S) is not so straightforward.> Thus, we choose
not to define any new or fixed violations for merge commits.

Finally, let us consider how to efficiently attribute multiple
snapshots. A common use case would be to attribute every
snapshot in the entire revision history of a project, or every
snapshot within a given time window.

Since all parents of a snapshot need to be analysed before
attribution is possible, we could perform a breadth-first traver-
sal of the revision graph: start by analysing the first snapshot
and all its children; assuming that all of them are analysable,
the child snapshots can then be attributed. Now analyse all of
their children for which all parents have been analysed in turn
and attribute them, and so on.

In practice, however, later revisions are often more inter-
esting: users normally first want to understand recent changes
in code quality before they turn to historic data. Also, older
snapshots are more likely to be unanalysable due to missing
dependencies, so attribution may not even be possible in many
cases. This is why Team Insight attributes snapshots in reverse
chronological order.

Since analysing and attributing a large number of revisions
can take a very long time, the analysis and attribution tasks
need to be parallelised as much as possible. To this end,
Team Insight splits up all analysable snapshots into attribution
chunks: an attribution chunk consists of a set A of snapshots to
attribute together with a set U of supporting snapshots such

“Note that this case only arises if the violation has disappeared from its
original file (since both location-based matching and diff-based matching fail),
and multiple new copies of the violation have appeared elsewhere. This is most
commonly caused by a piece of code (containing the violation) being cut from
its own file and pasted into multiple other files. By avoiding a match, we
force this to be considered as a single fixed violation and multiple introduced
violations, which seems like the most appropriate way to model it.

SF(S) consists of violations in the parent snapshot, and so for merge
commits we would have to identify corresponding violations across all parent
snapshots. This is made more difficult by the fact that our definition of hash-
based matching is not transitive (since only one hash needs to be equal to
establish a match), so all pairs of parent snapshots would have to be compared
against each other.

that for each snapshot in A all of its parents are contained
in either A or U. Clearly, once all snapshots in A U U have
been analysed, all the snapshots in A can be attributed without
referring to any other snapshots. Thus, different attribution
chunks can be processed in parallel.

V. DEVELOPER FINGERPRINTING

We now discuss an important application of attribution
information: computing violation fingerprints to characterise
which kinds of violations developers tend to introduce or fix.

We represent the violation fingerprint for a developer by
two vectors, one containing information about introduced
violations and one about fixed violations. Each vector has
one component per violation type, where the component
corresponding to some violation type tells us how often the
developer introduces or fixes violations of that type.

Given a set of attributed snapshots, we can compute a
fingerprint for every developer by simply summing up the
number of introduced and fixed violations of every type over
all the snapshots authored by the given developer.

However, such uncalibrated fingerprints are difficult to com-
pare between developers: a developer who has changed more
lines of code is, in general, expected to have introduced and
fixed more violations than a developer with fewer contribu-
tions. Thus, it makes sense to scale the components of each
vector to account for such differences in productivity.

We consider two scaling factors:

1) Scaling by churn, where the violation counts are divided
by the total number of lines of code changed by the
developer across the set of considered snapshots.

2) Scaling by total number of violations, where the viola-
tion counts are divided by the total number of new/fixed
violations of the developer. This provides an overview
of what portion of the violations a developer introduces
or fixes are of a certain type.

As an example, assume we have two developers d; and
ds, and we have a set of snapshots where violations of two
types have been attributed. If d; has introduced a total of 10
violations of the first type and fixed none, while introducing
5 violations of the second type and fixing 2, her uncalibrated
violation fingerprint is ((10, 5), (0, 2)). Similarly, if the finger-
print of do is ((4, 1), (0, 4)), then this means that he introduced
four violations of the first type and one of the second type,
while fixing four violations of the second type, but none of
the first type.

Given these uncalibrated fingerprints, it may be tempting to
deduce that d; introduces more violations of the first type
than d,. If, however, d; contributed 50000 lines of churn
while d> only touched 1000 lines of code, this conclusion
is unwarranted: d; contributed 50 times as much code than
ds, but only introduced about twice as many violations of
the first type. Scaling the fingerprints by the amount of
churn (in thousands of lines of code) d;i’s fingerprint be-
comes ((0.2,0.1),(0,0.04)), while dy’s fingerprint is still
((4,1),(0,4)): this shows that, relatively speaking, da is much



Name | Language | # Snapshots | Size (KLOC) | Churn (KLOC) | Total New | Total Fixed

Hadoop Common [8] | Java 27086 1200 6206 51294 20212

MongoDB [25] C++ 5057 429 536 2721 2075

Spark [9] Scala 7226 75 835 8179 3960

Gaia [10] JavaScript 27024 560 4468 75337 75938

TABLE 1
PROJECTS USED IN THE EVALUATION
. . . . . Project Exact Fuzzy | Snippet Hash
more l.1kely to 1ntrqduc§ violations of both types, but is also Fadoop 133,000,488 | 46,880 4505 | 14369
more likely to fix violations of the second type. 99.95% | 0.04% | 0.00% | 0.01%
If, instead, we want to compare how many of the fixed/in- MongoDB | 52,432,554 | 21,551 2,044 | 21,239
troduced violations of a developer are of a certain type we 9991% | 0.04% | 0.00% | 0.04%
P _ ype Spark 22.891,706 | 61,949 | 1967 | 43,379
can scale by the total number of fixed/introduced violations: 99.53% | 027% | 0.01% | 0.19%
overall, developer d; introduced 15 violations and fixed two, Gaia 63,855,193 | 28,830 6,280 | 39,154
. . o7
so her fingerprint becomes ((2, 1), (0,1)); developer ds intro- 99.88% | 0.05% | 001% | 0.06%
TABLE 11

duced five and fixed four, giving the (very similar) fingerprint
((0.8,0.2),(0,1)).

Which kind of fingerprint is more useful depends on the
application area. Fingerprints scaled by churn are useful to
compare different developers, and could, for instance, be used
to find out which team member is most adept at fixing a
given kind of violation. Fingerprints scaled by the number
of violations, on the other hand, compare a single developer’s
performance in different areas, and could hence be used to
select appropriate training.

VI. EVALUATION

We now report on an evaluation of our violation matching
approach and the developer fingerprinting on four large open-
source projects with significant revision histories. For the
violation matching, we investigate the quality of the match-
ings produced, and the relative importance of the different
matching strategies. For the fingerprinting, we assess whether
fingerprints are, in fact, characteristic of individual developers.

A. Evaluation subjects

As our evaluation subjects, we chose the four open-source
projects Hadoop Common, MongoDB, Spark and Gaia, as
shown in Table I. For each of our subjects, the table shows
the language they are implemented in; the total number
of snapshots that were attributed; the approximate size (in
thousand lines of code) of the latest attributed snapshot; the
total amount of churn across all attributed snapshots; and the
total number of new and fixed violations.®

To find violations, we used the default analysis suites of
our tool Project Insight, comprising 191 analyses for Java,
94 for C++, 115 for Scala, and 73 for JavaScript. The raw
analysis results our experiments are based on are available
from http://semmle.com/publications.

B. Evaluating violation matching
We evaluate our violation matching algorithm with respect
to two evaluation criteria:

SNote that for Gaia there are more fixed than new violations; this is because
some violations were introduced in unattributable revisions.

VIOLATION MATCHINGS CONTRIBUTED BY INDIVIDUAL ALGORITHMS

EC1 How many violation matchings are contributed by
the different matching algorithms?
EC2 Do these violation matchings match up violations

that actually refer to the same underlying defect?

To answer EC1, we randomly selected 5000 snapshots from
each of our subject programs and counted how many violation
matchings were contributed by each of the algorithms. The
results are shown in Table II: for the location-based violation
matching, we distinguish between exact matches (column
“Exact”) and matches in diff regions that are no further than
three lines apart (column “Fuzzy”); columns “Snippet” and
“Hash” refer to the snippet-based matching and hash-based
matching algorithms, respectively.

As one might expect, the overwhelming majority of match-
ings are exact: usually, a single commit only touches a small
number of files, so almost all violations remain unaffected.
Most of the remaining matchings are found by the fuzzy
matching algorithm, which applies if there were changes
within the same file that do not affect the violation itself,
but only shift it by a few lines. Snippet-based matching only
applies in a few cases, while the contribution of the hash-based
algorithm varies considerably between projects: it contributes
very little on Hadoop, but is more important than the fuzzy
matching algorithm on Gaia.’

This suggests that exact matching may, in practice, be
enough for many applications. For our use case of attributing
violations to developers, however, this is not so: on Mon-
goDB, for instance, hash-based matching contributes 21239
matchings. This number is vanishingly small when compared
to the total number of matched violations, but it is ten
times the total number of fixed violations identified across
all attributed snapshots. Without hash-based matching, each
missing matchings would give rise to one new violation and
one fixed violation, dramatically influencing the overall result.

"Recall that the different algorithms are applied in stages, where more
sophisticated algorithms are only run for those violations that could not be
matched using the simpler algorithms.



As for EC2, it can ultimately only be answered by do-
main experts manually examining a large number of violation
matchings and deciding whether they are reasonable or not.
In lieu of a large-scale experiment (the outcome of which
would, in the light of [21], be of doubtful significance) we
manually inspected 100 randomly selected hash-based match-
ings from each of our four subject programs. Most of these
400 matchings corresponded to file renames or moves that
were confirmed either by the snapshot’s commit message or
by version control metadata. The remainder were due to code
being copied between files, or moved within a file with minor
changes being performed at the same time, thus preventing
the violations from being matched up by the snippet-based
algorithm. None of the matchings were obviously wrong.

We have not yet performed a comprehensive performance
evaluation of our violation matching approach. However, we
observed during our experiments that the location-based and
snippet-based algorithms each take about three to four mil-
liseconds to compare two files. The hash-based algorithm is
global and hence more expensive, taking around four seconds
to compute matchings for a pair of snapshots.

C. Evaluating fingerprinting

The other main focus of our evaluation is to examine
how meaningful our violation fingerprints are. Recall that
fingerprints are computed from a set of attributed snapshots. If
fingerprints for the same developer vary wildly across different
sets of snapshots, we would have to conclude that they are not
well-defined. Conversely, if different developers are assigned
very similar fingerprints, this would mean that fingerprints are
not characteristic. Finally, even if violation fingerprints are
characteristic, we have to show that they do not simply reflect
more basic characteristics of a developer such as average churn
per commit, or average number of violations per commit.

We distill these considerations into three evaluation criteria:

EC3
EC4

Are fingerprints stable across different snapshot sets?
Is there a measurable difference between the finger-
prints computed for different developers?
Are violation fingerprints independent of churn and
total number of new and fixed violations?

EC5

To answer these questions, we designed an experiment in
which we take two sets A and B of snapshots and compute for
every developer d a violation fingerprint f(d, A) based on the
snapshots in set A (the training set), and a violation fingerprint
f(d, B) based on the snapshots in set B (the test set). Now
we compare f(d, A) against the fingerprints f(d’, B) of all
developers (including d) as computed from set B and rank
them by their Euclidean distance ||f(d, A) — f(d’, B)|| from
the fingerprint of d.%

If fingerprints are highly dependent on the set of snapshots
used to compute them (EC3), we would expect the outcome of
this ranking to be mostly random. Similarly, if all developers

8Recall that fingerprints are pairs of vectors; to determine their distance,
we simply concatenate the two constituent vectors into one larger vector, and
then compute their Euclidean distance.

tend to have similar fingerprints (EC4), a random outcome
would be expected.

To address ECS, we perform our experiments with two
kinds of fingerprints: violation density fingerprints and viola-
tion vector fingerprints scaled by total violations. The former
are two-element vectors containing the total number of new
violations and the total number of fixed violations, scaled
by the number of lines changed. The latter are vectors with
one element per violation type, scaled by the total number of
fixed/new violations as described in Section V. If developers,
on average, introduce and fix the same number of violations
per line of code they touch, the ranking using violation density
fingerprints should be random, since these fingerprints are
scaled by churn. Similarly, if developers introduce and fix
different kinds of violations with the same frequency, the
violation vector fingerprints would produce random rankings,
since they are scaled by the total number of violations.

Care has to be taken in selecting the snapshot sets A and B
and in choosing which developers to compute fingerprints for.
We exclude commits with less than 10 lines of churn (since
they most likely have too few fixed or new violations to be
interesting), and commits with more than 10000 lines of churn
(since they are not likely to actually be the work of a single
developer). We also do not include commits by developers
who have contributed fewer than 50 commits or less than 5000
lines of churn, since their contributions are likely too small to
derive a significant fingerprint from.

Overall, our experiment comprises the following steps:

1) Randomly partition the set of all considered snapshots
into two halves A and B.

2) Compute fingerprints for all developers on A and B, and
compute ranks as explained above.

3) For every kind of fingerprint, count how often a de-
veloper’s fingerprint was ranked as being closest to
themselves, second-closest to themselves, and so on.

To enhance statistical significance, we perform these steps
100 times on every test subject and aggregate the counts. The
results of these experiments are shown in Figure 5, Figure 6,
Figure 7, and Figure 8. Every figure contains two histograms,
showing the results for the violation density fingerprint on
the left, and for the violation vector fingerprint on the right.
The individual bars show how often (over the 100 runs of
the experiment) a developer was ranked as being closest to
themselves, second-closest to themselves, and so on.?

We note that none of the experiments yield a random
distribution. Instead, both kinds of fingerprints consistently
rank developers as similar to themselves and dissimilar to
others, thus suggesting a positive answer to EC3 and EC4.

Since this is, in particular, true for the violation density
fingerprints on all four subject programs, we conclude that the
ratio of introduced and fixed violations per lines of changed
code is not the same for all developers. The results are
even more striking for the violation vector fingerprints: our
experiments give a strong indication that each developer has

Note that for readability the two graphs are not on the same scale.



200 -

0 10 20 3

violation density fingerprints

150 +
50 +
| ‘““|I|IIII|||||.|.u|.|.|||l
0 4 50

2,000 |
1,000 -
o IIIIlIllllll .......................................
| | | | | |
0 10 20 30 40 50

violation vector fingerprints

Fig. 5. Ranking results for Hadoop Common

T
600 - N
150 N
400 N
100
‘ ‘ ‘ 200 - N
50 | N
‘ I 1 Y O O N DI
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
violation density fingerprints violation vector fingerprints
Fig. 6. Ranking results for MongoDB
600 - ]
200 - N
400 N
100 - ‘ ‘ 1 200l | i
! ‘ ‘l‘llllllll 0 IIIIIIIIIIIIII..
0O 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
violation density fingerprints violation vector fingerprints
Fig. 7. Ranking results for Spark
300 [ N
2,000 |- =
200 - N
1,000 |- s
i “““ ‘ |
ol ||||||||||I|I|||||“I||||||“||II.|||| | of Mmoo
0 10 20 30 40 50 60 0 10 20 30 40 50 60

violation density fingerprints

violation vector fingerprints

Fig. 8. Ranking results for Gaia




a very characteristic signature in terms of the violations they
introduce and fix as a proportion of their overall number of
violations. ECS can hence also be answered in the affirmative.

These results hold for all our subject programs. The com-
paratively weak results for MongoDB and Spark are most
likely due to the relatively sparse data: across the snapshots
we analysed, there were only 15 developers on MongoDB and
18 on Spark who accumulated enough churn and commits to
be considered in our experiments (compared to 52 on Hadoop
and 59 on Gaia), which makes the results less stable.

D. Threats to validity

Our static analysis examines source code as it is seen by the
compiler during a build, including generated code. Attributing
violations in generated code code is, however, not straight-
forward, so we manually excluded it from consideration on a
best-effort basis. Given the size and complexity of our subject
programs, we may have missed some files, which could affect
our results. Another difficulty are bulk imports of third-party
code. Our experiments account for this by excluding revisions
with large amounts of churn, but this is only a heuristic.

Furthermore, we ran our static analysis with its standard
rule set. Using different rules might conceivably lead to a
different outcome, but preliminary experiments with subsets
of the standard rule set yielded similar conclusions.

In computing fingerprints, we only consider developers who
have contributed at least 50 commits and 5000 lines of churn.
We have not yet experimented with varying these thresholds.

We used violation density fingerprints and violation vector
fingerprints in our experiments. Many other ways of com-
puting fingerprinting could be devised, and some of them
may well be even more characteristic of individual developers
than the ones we used. For example, a syntactic fingerprint
based on preferred indentation style would probably be highly
characteristic. However, such shallow fingerprints do not yield
much insight into the contributions a developer makes to the
software quality of a code base, which is our main interest.

Finally, we note that care has to be taken in generalising our
results to other projects. We deliberately chose diverse projects
utilising different programming languages. Although they are
open source, all four projects have core developers from
large software companies. Therefore, we expect our results
to generalise to both commercial and open source projects.

VII. RELATED WORK

Spacco et al. [33] discuss two location-based violation
matching techniques used in FindBugs [28] and Fortify [7]. To
allow for code movement, they relax their location matching in
various ways, for example by matching violations at different
locations within the same method, and by only considering the
name (but not the full path) of the enclosing file. As in our
approach, they prioritise stricter matching criteria over more
relaxed ones. However, their approach cannot match violations
that have moved between methods or even classes.

Diff-based matching of code snippets has been used to track
violations forward [3] and fixed bugs backward [20] through

revision history, as well as for tracking code clones [19].
Sliwerski et al. [32] directly use revision control metadata
to pair up fix inducing commits with later bug fixes. Kim
et al. [22] improve upon this by adding a form of diff-based
matching similar to our approach.

Hash-based matching does not seem to have been used for
tracking static analysis violations before, but the technique
itself is well established in multi-version analysis [18]. Clone
detectors, in particular, often use hashes to identify potential
code clones within a given code base. Our hashes are token-
based, similar to the one used by PMD’s code clone detec-
tor [30]. Other systems use more advanced similarity metrics
based on the AST [2] or the PDG [23], which are less scalable.

In origin analysis [12], [13], whole functions are hashed
based on attributes such as cyclomatic complexity as well as
call graph information. Our methods for violation matching
strive to be language and analysis independent, and hence
cannot directly employ such advanced hash functions.

Violation fingerprints as defined in this paper appear to be
novel. Previous work has considered other developer character-
istics such as code ownership, that is, how much experience
a developer has with a piece of code [11], [14]. Typically,
these characteristics are computed entirely from source control
information without any static analysis.

Developer fingerprints based on layout information, lexical
characteristics and software metrics have been employed in
software forensics to identify authors of un-attributed code [5],
[24], [34]. Spafford et al. [34] suggest considering typical bugs
as well. Judging from our dataset, this seems difficult, since
most revisions introduce or fix at most one or two violations,
which is insufficient to derive a meaningful fingerprint.

VIII. CONCLUSION

We have motivated the need for enriching static analysis re-
sults with revision information to track changes in code quality
over time, and attribute changes to individual developers. The
main enabling technique for such an integration is violation
tracking, which determines new and fixed violations in a
revision relative to its parent revisions. We have discussed one
approach for implementing violation tracking, and validated it
on several substantial open-source projects written in different
programming languages. We furthermore demonstrated that
developers have characteristic fingerprints of violations they
tend to introduce and fix.

It has been observed that static analysis violations are often
ignored by developers [16]. Some organisations have tried
to address this by imposing a commit gate that enforces
adherence to coding rules, but experience with our clients
has shown that this is counter-productive: sometimes busi-
ness circumstances necessitate the introduction of technical
debt, which manifests itself through an increased number of
violations [36]. Fingerprints, on the other hand, allow each
individual to keep track of their own coding habits, of where
they are doing well and where they can improve, thus helping
to establish an esprit de corps among a team of developers.



[1]

[2]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

REFERENCES

Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John
Penix, and William Pugh. Using Static Analysis to Find Bugs. [EEE
Software, 25(5), 2008.

Ira D. Baxter, Andrew Yahin, Leonardo Mendon¢a de Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone Detection Using Abstract Syntax
Trees. In ICSM, 1998.

Cathal Boogerd and Leon Moonen. Evaluating the Relation Between
Coding Standard Violations and Faults Within and Across Software
Versions. In MSR, 2009.

Coverity. Code Advisor. http://www.coverity.com, 2015.

Haibiao Ding and Mansur H. Samadzadeh. Extraction of Java Program
Fingerprints for Software Authorship Identification. Journal of Systems
and Software, 72(1), 2004.

Alex Eagle and Eddie Aftandilian. error-prone. https://code.google.com/
p/error-prone, 2015.

HP Fortify. Static Code Analyzer. http:/fortify.com, 2015.

Apache Foundation. Hadoop. http://hadoop.apache.org, 2015.

Apache Foundation. Spark. http://spark.incubator.apache.org, 2015.
Mozilla Foundation. Gaia. https://github.com/mozilla-b2g/gaia, 2015.
Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse.
How Developers Drive Software Evolution. In IWPSE, 2005.

Michael W. Godfrey and Qiang Tu. Tracking Structural Evolution Using
Origin Analysis. In IWPSE, 2002.

Michael W. Godfrey and Lijie Zou. Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities. IEEE TSE, 31(2), 2005.
Lile Hattori, Michele Lanza, and Romain Robbes. Refining Code
Ownership with Synchronous Changes. ESE, 17(4-5), 2012.

James W. Hunt and Thomas G. Szymanski. A Fast Algorithm for
Computing Longest Common Subsequences. CACM, 20(5), 1977.
Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W.
Bowdidge. Why Don’t Software Developers Use Static Analysis Tools
to Find Bugs? In ICSE, 2013.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A
Multilinguistic Token-based Code Clone Detection System for Large
Scale Source Code. IEEE TSE, 28(7), 2002.

Miryung Kim and David Notkin. Program Element Matching for Multi-
Version Program Analyses. In MSR, 2006.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An
Empirical Study of Code Clone Genealogies. In FSE, 2005.

[20]

[21]

[22]
(23]
[24]

[25]
[26]

[27]
(28]

[29]

[30]
(31]
(32]
[33]
[34]

[35]

[36]
[37]

[38]

Sunghun Kim and Michael D. Ernst. Which Warnings Should I Fix
First? In FSE, 2007.

Sunghun Kim, Kai Pan, and E. James Whitehead, Jr. When Functions
Change Their Names: Automatic Detection of Origin Relationships. In
WCRE, 2005.

Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Whitehead
Jr. Automatic Identification of Bug-Introducing Changes. In ASE, 2006.
Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify
Duplication in Source Code. In SAS, 2001.

Ivan Krsul and Eugene H. Spafford. Authorship Analysis: Identifying
The Author of a Program. Computers & Security, 16(3), 1997.
MongoDB, Inc. MongoDB. http://www.mongodb.org, 2015.

Eugene W. Myers. An O(ND) Difference Algorithm and Its Variations.
Algorithmica, 1, 1986.

Nachiappan Nagappan and Thomas Ball. Static Analysis Tools as Early
Indicators of Pre-Release Defect Density. In ICSE, 2005.

University of Maryland. FindBugs. http://findbugs.sourceforge.net,
2015.

H.M. Olague, L.H. Etzkorn, S. Gholston, and S. Quattlebaum. Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness
of Object-Oriented Classes Developed Using Highly Iterative or Agile
Software Development Processes. IEEE TSE, 33(6), 2007.

PMD Source Code Analyzer. http://pmd.sf.net, 2015.

Semmle. Project Insight. http://semmle.com, 2015.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When Do
Changes Induce Fixes? In MSR, 2005.

Jaime Spacco, David Hovemeyer, and William Pugh. Tracking Defect
Warnings Across Versions. In MSR, 2006.

Eugene H. Spafford and Stephen A. Weeber. Software Forensics: Can
We Track Code to its Authors? Computers & Security, 12(6), 1993.
Ramanath Subramanyam and M. S. Krishnan. Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity: Implications for
Software Defects. IEEE TSE, 29(4), 2003.

Antonio Vetro’. Using Automatic Static Analysis to Identify Technical
Debt. In ICSE, 2012.

Antonio Vetro’, Maurizio Morisio, and Marco Tochiano. An Empirical
Validation of FindBugs Issues Related to Defects. In EASE, 2011.
Jiang Zheng, Laurie A. Williams, Nachiappan Nagappan, Will Snipes,
John P. Hudepohl, and Mladen A. Vouk. On the Value of Static Analysis
for Fault Detection in Software. IEEE TSE, 32(4), 2006.



